Efficient multivariate entropy estimation via $k$-nearest neighbour distances

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient multivariate entropy estimation via k-nearest neighbour distances

Many statistical procedures, including goodness-of-fit tests and methods for independent component analysis, rely critically on the estimation of the entropy of a distribution. In this paper, we seek entropy estimators that are efficient in the sense of achieving the local asymptotic minimax lower bound. To this end, we initially study a generalisation of the estimator originally proposed by Ko...

متن کامل

Divergence estimation for multidimensional densities via k-nearest-neighbor distances

A new universal estimator of divergence is presented for multidimensional continuous densities based on -nearest-neighbor ( -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the -NN approach generally exhibits faster convergence than p...

متن کامل

k-Nearest Neighbour Classifiers

Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...

متن کامل

A non-parametric k-nearest neighbour entropy estimator

A non-parametric k-nearest neighbour based entropy estimator is proposed. It improves on the classical Kozachenko-Leonenko estimator by considering non-uniform probability densities in the region of k-nearest neighbours around each sample point. It aims at improving the classical estimators in three situations: first, when the dimensionality of the random variable is large; second, when near-fu...

متن کامل

Efficient model selection for probabilistic K nearest neighbour classification

ProbabilisticK-nearest neighbour (PKNN) classification has been introduced to improve the performance of the original K-nearest neighbour (KNN) classification algorithm by explicitly modelling uncertainty in the classification of each feature vector. However, an issue common to both KNN and PKNN is to select the optimal number of neighbours, K. The contribution of this paper is to incorporate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2019

ISSN: 0090-5364

DOI: 10.1214/18-aos1688